The brachymorph mouse and the developmental-genetic basis for canalization and morphological integration.

نویسندگان

  • Benedikt Hallgrímsson
  • Jevon J Y Brown
  • Alice F Ford-Hutchinson
  • H David Sheets
  • Miriam L Zelditch
  • Frank R Jirik
چکیده

Although it is well known that many mutations influence phenotypic variability as well as the mean, the underlying mechanisms for variability effects are very poorly understood. The brachymorph (bm) phenotype results from an autosomal recessive mutation in the phosphoadenosine-phosphosulfate synthetase 2 gene (Papps2). A major cranial manifestation is a dramatic reduction in the growth of the chondrocranium which results from undersulfation of glycosaminoglycans (GAGs) in the cartilage matrix. We found that this reduction in the growth of the chondrocranium is associated with an altered pattern of craniofacial shape variation, a significant increase in phenotypic variance and a dramatic increase in morphological integration for craniofacial shape. Both effects are largest in the basicranium. The altered variation pattern indicates that the mutation produces developmental influences on shape that are not present in the wildtype. As the mutation dramatically reduces sulfation of GAGs, we infer that this influence is variation among individuals in the degree of sulfation, or variable expressivity of the mutation. This variation may be because of genetic variation at other loci that influence sulfation, environmental effects, or intrinsic effects. We infer that chondrocranial development exhibits greater sensitivity to variation in the sulfation of chondroitin sulfate when the degree of sulfation is low. At normal levels, sulfation probably contributes minimally to phenotypic variation. This case illustrates canalization in a particular developmental-genetic context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independence between developmental stability and canalization in the skull of the house mouse.

The relationship between the two components of developmental homeostasis, that is canalization and developmental stability (DS), is currently debated. To appraise this relationship, the levels and morphological patterns of interindividual variation and fluctuating asymmetry were assessed using a geometric morphometric approach applied to the skulls of laboratory samples of the house mouse. Thes...

متن کامل

Genetics of microenvironmental canalization in Arabidopsis thaliana.

Canalization is a fundamental feature of many developmental systems, yet the genetic basis for this property remains elusive. We examine the genetic basis of microenvironmental canalization in the model plant Arabidopsis thaliana, focusing on differential developmental stability between genotypes in one fitness and four quantitative morphological traits. We measured developmental stability in g...

متن کامل

Unravelling intravertebral integration, modularity and disparity in Felidae (Mammalia).

Morphological integration and modularity, which describe the relationships among morphological attributes and reflect genetic, developmental, and functional interactions, have been hypothesized to be major influences on trait responses to selection and thus morphological evolution. The mammalian presacral vertebral column shows little variation in vertebral count and therefore specialization fo...

متن کامل

Genome-wide deficiency mapping of the regions responsible for temporal canalization of the developmental processes of Drosophila melanogaster.

Developmental processes of organisms are programmed to proceed in a finely regulated manner and finish within a certain period of time depending on the ambient environmental conditions. Therefore, variation in the developmental period under controlled genetic and environmental conditions indicates innate instability of the developmental process. In this study, we aimed to determine whether a mo...

متن کامل

A comparison of developmental and maternal toxicity of Perfluoro octane sulfonate (PFOS) in Mouse: Evaluation of histopathological and behavioral changes

Perfluorooctanesulfonate (PFOS) is a widely spread environmental contaminant. It accumulates in the brain and has potential neurotoxin effects. Due to chemical properties, PFOS shows persistency in the environment and therefore has potential hazardous effect. The risk of possible intra uterine exposure to PFOS poses a health concern for developmental effects. The goal of this study was survey o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolution & development

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2006